Tutorial 10 for MATH 2020A (2024 Fall)

- 1. Consider the cone frustum $S: z = 2\sqrt{x^2 + y^2}, 2 \le z \le 6$. Use a parametrization to express the area of the surface S as a double integral, and evaluate the integral.
- 2. The tangent plane at a point $\mathbf{P}_{\mathbf{0}} = (x(u_0, v_0), y(u_0, v_0), z(u_0, v_0))$ on a parametrized surface $S : \mathbf{r}(u, v) = (x(u, v), y(u, v), z(u, v))$ is defined by the plane through $\mathbf{P}_{\mathbf{0}}$ normal to the vector $\mathbf{n} = \mathbf{r}_u(u_0, v_0) \times \mathbf{r}_v(u_0, v_0)$.

Now consider the circular cylinder $S : \mathbf{r}(\theta, z) = (3 \sin 2\theta, 6 \sin^2 \theta, z), 0 \le \theta \le \pi$.

- (a) Find the Cartesian equation for the plane Γ tangent to the surface S at $\mathbf{P}_0 = \mathbf{r}(\frac{\pi}{3}, 0)$.
- (b) Sketch the surface S and tangent plane Γ together.
- 3. Suppose that the parametrized regular (i.e. smooth, non-self-intersecting and with non-vanishing velocity) curve C: $\mathbf{r}(u) = (f(u), g(u), 0), a \leq u \leq b$ lying in xy-plane is revolved about the x-axis, where $g(u) \geq 0$ for $a \leq u \leq b$.
 - (a) Sketch the resulting surface S of revolution.
 - (b) Find a parametrization of S and represent its surface area as a double integral.

(c) Calculate the area of the surface S obtianed by revolving the curve $x = y^2, 0 \le x \le 1$ about the x-axis.

- 4. Integrate the function $H(x, y, z) = x^2 \sqrt{5 4z}$ over the parabolic dome $S: z = 1 x^2 y^2, z \ge 0$.
- 5. Integrate G(x, y, z) = z x over the portion of the graph of $z = x + y^2$ above the triangle in the xy-plane having vertices (0, 0, 0), (1, 1, 0) and (0, 1, 0).